Xmipp  v3.23.11-Nereus
gmock-actions.h
Go to the documentation of this file.
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The ACTION* family of macros can be used in a namespace scope to
33 // define custom actions easily. The syntax:
34 //
35 // ACTION(name) { statements; }
36 //
37 // will define an action with the given name that executes the
38 // statements. The value returned by the statements will be used as
39 // the return value of the action. Inside the statements, you can
40 // refer to the K-th (0-based) argument of the mock function by
41 // 'argK', and refer to its type by 'argK_type'. For example:
42 //
43 // ACTION(IncrementArg1) {
44 // arg1_type temp = arg1;
45 // return ++(*temp);
46 // }
47 //
48 // allows you to write
49 //
50 // ...WillOnce(IncrementArg1());
51 //
52 // You can also refer to the entire argument tuple and its type by
53 // 'args' and 'args_type', and refer to the mock function type and its
54 // return type by 'function_type' and 'return_type'.
55 //
56 // Note that you don't need to specify the types of the mock function
57 // arguments. However rest assured that your code is still type-safe:
58 // you'll get a compiler error if *arg1 doesn't support the ++
59 // operator, or if the type of ++(*arg1) isn't compatible with the
60 // mock function's return type, for example.
61 //
62 // Sometimes you'll want to parameterize the action. For that you can use
63 // another macro:
64 //
65 // ACTION_P(name, param_name) { statements; }
66 //
67 // For example:
68 //
69 // ACTION_P(Add, n) { return arg0 + n; }
70 //
71 // will allow you to write:
72 //
73 // ...WillOnce(Add(5));
74 //
75 // Note that you don't need to provide the type of the parameter
76 // either. If you need to reference the type of a parameter named
77 // 'foo', you can write 'foo_type'. For example, in the body of
78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79 // of 'n'.
80 //
81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82 // multi-parameter actions.
83 //
84 // For the purpose of typing, you can view
85 //
86 // ACTION_Pk(Foo, p1, ..., pk) { ... }
87 //
88 // as shorthand for
89 //
90 // template <typename p1_type, ..., typename pk_type>
91 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92 //
93 // In particular, you can provide the template type arguments
94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95 // although usually you can rely on the compiler to infer the types
96 // for you automatically. You can assign the result of expression
97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98 // pk_type>. This can be useful when composing actions.
99 //
100 // You can also overload actions with different numbers of parameters:
101 //
102 // ACTION_P(Plus, a) { ... }
103 // ACTION_P2(Plus, a, b) { ... }
104 //
105 // While it's tempting to always use the ACTION* macros when defining
106 // a new action, you should also consider implementing ActionInterface
107 // or using MakePolymorphicAction() instead, especially if you need to
108 // use the action a lot. While these approaches require more work,
109 // they give you more control on the types of the mock function
110 // arguments and the action parameters, which in general leads to
111 // better compiler error messages that pay off in the long run. They
112 // also allow overloading actions based on parameter types (as opposed
113 // to just based on the number of parameters).
114 //
115 // CAVEAT:
116 //
117 // ACTION*() can only be used in a namespace scope as templates cannot be
118 // declared inside of a local class.
119 // Users can, however, define any local functors (e.g. a lambda) that
120 // can be used as actions.
121 //
122 // MORE INFORMATION:
123 //
124 // To learn more about using these macros, please search for 'ACTION' on
125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126 
127 // IWYU pragma: private, include "gmock/gmock.h"
128 // IWYU pragma: friend gmock/.*
129 
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132 
133 #ifndef _WIN32_WCE
134 #include <errno.h>
135 #endif
136 
137 #include <algorithm>
138 #include <functional>
139 #include <memory>
140 #include <string>
141 #include <tuple>
142 #include <type_traits>
143 #include <utility>
144 
147 #include "gmock/internal/gmock-pp.h"
148 
149 #ifdef _MSC_VER
150 #pragma warning(push)
151 #pragma warning(disable : 4100)
152 #endif
153 
154 namespace testing {
155 
156 // To implement an action Foo, define:
157 // 1. a class FooAction that implements the ActionInterface interface, and
158 // 2. a factory function that creates an Action object from a
159 // const FooAction*.
160 //
161 // The two-level delegation design follows that of Matcher, providing
162 // consistency for extension developers. It also eases ownership
163 // management as Action objects can now be copied like plain values.
164 
165 namespace internal {
166 
167 // BuiltInDefaultValueGetter<T, true>::Get() returns a
168 // default-constructed T value. BuiltInDefaultValueGetter<T,
169 // false>::Get() crashes with an error.
170 //
171 // This primary template is used when kDefaultConstructible is true.
172 template <typename T, bool kDefaultConstructible>
174  static T Get() { return T(); }
175 };
176 template <typename T>
177 struct BuiltInDefaultValueGetter<T, false> {
178  static T Get() {
179  Assert(false, __FILE__, __LINE__,
180  "Default action undefined for the function return type.");
181  return internal::Invalid<T>();
182  // The above statement will never be reached, but is required in
183  // order for this function to compile.
184  }
185 };
186 
187 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
188 // for type T, which is NULL when T is a raw pointer type, 0 when T is
189 // a numeric type, false when T is bool, or "" when T is string or
190 // std::string. In addition, in C++11 and above, it turns a
191 // default-constructed T value if T is default constructible. For any
192 // other type T, the built-in default T value is undefined, and the
193 // function will abort the process.
194 template <typename T>
196  public:
197  // This function returns true if and only if type T has a built-in default
198  // value.
199  static bool Exists() { return ::std::is_default_constructible<T>::value; }
200 
201  static T Get() {
203  T, ::std::is_default_constructible<T>::value>::Get();
204  }
205 };
206 
207 // This partial specialization says that we use the same built-in
208 // default value for T and const T.
209 template <typename T>
210 class BuiltInDefaultValue<const T> {
211  public:
212  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
213  static T Get() { return BuiltInDefaultValue<T>::Get(); }
214 };
215 
216 // This partial specialization defines the default values for pointer
217 // types.
218 template <typename T>
220  public:
221  static bool Exists() { return true; }
222  static T* Get() { return nullptr; }
223 };
224 
225 // The following specializations define the default values for
226 // specific types we care about.
227 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
228  template <> \
229  class BuiltInDefaultValue<type> { \
230  public: \
231  static bool Exists() { return true; } \
232  static type Get() { return value; } \
233  }
234 
241 
242 // There's no need for a default action for signed wchar_t, as that
243 // type is the same as wchar_t for gcc, and invalid for MSVC.
244 //
245 // There's also no need for a default action for unsigned wchar_t, as
246 // that type is the same as unsigned int for gcc, and invalid for
247 // MSVC.
248 #if GMOCK_WCHAR_T_IS_NATIVE_
249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
250 #endif
251 
252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
262 
263 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
264 
265 // Partial implementations of metaprogramming types from the standard library
266 // not available in C++11.
267 
268 template <typename P>
269 struct negation
270  // NOLINTNEXTLINE
271  : std::integral_constant<bool, bool(!P::value)> {};
272 
273 // Base case: with zero predicates the answer is always true.
274 template <typename...>
275 struct conjunction : std::true_type {};
276 
277 // With a single predicate, the answer is that predicate.
278 template <typename P1>
279 struct conjunction<P1> : P1 {};
280 
281 // With multiple predicates the answer is the first predicate if that is false,
282 // and we recurse otherwise.
283 template <typename P1, typename... Ps>
284 struct conjunction<P1, Ps...>
285  : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
286 
287 template <typename...>
288 struct disjunction : std::false_type {};
289 
290 template <typename P1>
291 struct disjunction<P1> : P1 {};
292 
293 template <typename P1, typename... Ps>
294 struct disjunction<P1, Ps...>
295  // NOLINTNEXTLINE
296  : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
297 
298 template <typename...>
299 using void_t = void;
300 
301 // Detects whether an expression of type `From` can be implicitly converted to
302 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
303 //
304 // An expression e can be implicitly converted to a type T if and only if
305 // the declaration T t=e; is well-formed, for some invented temporary
306 // variable t ([dcl.init]).
307 //
308 // [conv]/2 implies we can use function argument passing to detect whether this
309 // initialization is valid.
310 //
311 // Note that this is distinct from is_convertible, which requires this be valid:
312 //
313 // To test() {
314 // return declval<From>();
315 // }
316 //
317 // In particular, is_convertible doesn't give the correct answer when `To` and
318 // `From` are the same non-moveable type since `declval<From>` will be an rvalue
319 // reference, defeating the guaranteed copy elision that would otherwise make
320 // this function work.
321 //
322 // REQUIRES: `From` is not cv void.
323 template <typename From, typename To>
325  private:
326  // A function that accepts a parameter of type T. This can be called with type
327  // U successfully only if U is implicitly convertible to T.
328  template <typename T>
329  static void Accept(T);
330 
331  // A function that creates a value of type T.
332  template <typename T>
333  static T Make();
334 
335  // An overload be selected when implicit conversion from T to To is possible.
336  template <typename T, typename = decltype(Accept<To>(Make<T>()))>
337  static std::true_type TestImplicitConversion(int);
338 
339  // A fallback overload selected in all other cases.
340  template <typename T>
341  static std::false_type TestImplicitConversion(...);
342 
343  public:
344  using type = decltype(TestImplicitConversion<From>(0));
345  static constexpr bool value = type::value;
346 };
347 
348 // Like std::invoke_result_t from C++17, but works only for objects with call
349 // operators (not e.g. member function pointers, which we don't need specific
350 // support for in OnceAction because std::function deals with them).
351 template <typename F, typename... Args>
352 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
353 
354 template <typename Void, typename R, typename F, typename... Args>
355 struct is_callable_r_impl : std::false_type {};
356 
357 // Specialize the struct for those template arguments where call_result_t is
358 // well-formed. When it's not, the generic template above is chosen, resulting
359 // in std::false_type.
360 template <typename R, typename F, typename... Args>
361 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
362  : std::conditional<
363  std::is_void<R>::value, //
364  std::true_type, //
365  is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
366 
367 // Like std::is_invocable_r from C++17, but works only for objects with call
368 // operators. See the note on call_result_t.
369 template <typename R, typename F, typename... Args>
370 using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
371 
372 // Like std::as_const from C++17.
373 template <typename T>
375  return t;
376 }
377 
378 } // namespace internal
379 
380 // Specialized for function types below.
381 template <typename F>
383 
384 // An action that can only be used once.
385 //
386 // This is accepted by WillOnce, which doesn't require the underlying action to
387 // be copy-constructible (only move-constructible), and promises to invoke it as
388 // an rvalue reference. This allows the action to work with move-only types like
389 // std::move_only_function in a type-safe manner.
390 //
391 // For example:
392 //
393 // // Assume we have some API that needs to accept a unique pointer to some
394 // // non-copyable object Foo.
395 // void AcceptUniquePointer(std::unique_ptr<Foo> foo);
396 //
397 // // We can define an action that provides a Foo to that API. Because It
398 // // has to give away its unique pointer, it must not be called more than
399 // // once, so its call operator is &&-qualified.
400 // struct ProvideFoo {
401 // std::unique_ptr<Foo> foo;
402 //
403 // void operator()() && {
404 // AcceptUniquePointer(std::move(Foo));
405 // }
406 // };
407 //
408 // // This action can be used with WillOnce.
409 // EXPECT_CALL(mock, Call)
410 // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
411 //
412 // // But a call to WillRepeatedly will fail to compile. This is correct,
413 // // since the action cannot correctly be used repeatedly.
414 // EXPECT_CALL(mock, Call)
415 // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
416 //
417 // A less-contrived example would be an action that returns an arbitrary type,
418 // whose &&-qualified call operator is capable of dealing with move-only types.
419 template <typename Result, typename... Args>
420 class OnceAction<Result(Args...)> final {
421  private:
422  // True iff we can use the given callable type (or lvalue reference) directly
423  // via StdFunctionAdaptor.
424  template <typename Callable>
426  // It must be possible to capture the callable in StdFunctionAdaptor.
428  // The callable must be compatible with our signature.
430  Args...>>;
431 
432  // True iff we can use the given callable type via StdFunctionAdaptor once we
433  // ignore incoming arguments.
434  template <typename Callable>
436  // It must be possible to capture the callable in a lambda.
437  std::is_constructible<typename std::decay<Callable>::type, Callable>,
438  // The callable must be invocable with zero arguments, returning something
439  // convertible to Result.
440  internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
441 
442  public:
443  // Construct from a callable that is directly compatible with our mocked
444  // signature: it accepts our function type's arguments and returns something
445  // convertible to our result type.
446  template <typename Callable,
447  typename std::enable_if<
449  // Teach clang on macOS that we're not talking about a
450  // copy/move constructor here. Otherwise it gets confused
451  // when checking the is_constructible requirement of our
452  // traits above.
453  internal::negation<std::is_same<
456  ::value,
457  int>::type = 0>
458  OnceAction(Callable&& callable) // NOLINT
459  : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
460  {}, std::forward<Callable>(callable))) {}
461 
462  // As above, but for a callable that ignores the mocked function's arguments.
463  template <typename Callable,
464  typename std::enable_if<
466  // Teach clang on macOS that we're not talking about a
467  // copy/move constructor here. Otherwise it gets confused
468  // when checking the is_constructible requirement of our
469  // traits above.
470  internal::negation<std::is_same<
471  OnceAction, typename std::decay<Callable>::type>>,
472  // Exclude callables for which the overload above works.
473  // We'd rather provide the arguments if possible.
476  int>::type = 0>
477  OnceAction(Callable&& callable) // NOLINT
478  // Call the constructor above with a callable
479  // that ignores the input arguments.
480  : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
481  std::forward<Callable>(callable)}) {}
482 
483  // We are naturally copyable because we store only an std::function, but
484  // semantically we should not be copyable.
485  OnceAction(const OnceAction&) = delete;
486  OnceAction& operator=(const OnceAction&) = delete;
487  OnceAction(OnceAction&&) = default;
488 
489  // Invoke the underlying action callable with which we were constructed,
490  // handing it the supplied arguments.
491  Result Call(Args... args) && {
492  return function_(std::forward<Args>(args)...);
493  }
494 
495  private:
496  // An adaptor that wraps a callable that is compatible with our signature and
497  // being invoked as an rvalue reference so that it can be used as an
498  // StdFunctionAdaptor. This throws away type safety, but that's fine because
499  // this is only used by WillOnce, which we know calls at most once.
500  //
501  // Once we have something like std::move_only_function from C++23, we can do
502  // away with this.
503  template <typename Callable>
504  class StdFunctionAdaptor final {
505  public:
506  // A tag indicating that the (otherwise universal) constructor is accepting
507  // the callable itself, instead of e.g. stealing calls for the move
508  // constructor.
509  struct CallableTag final {};
510 
511  template <typename F>
512  explicit StdFunctionAdaptor(CallableTag, F&& callable)
513  : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
514 
515  // Rather than explicitly returning Result, we return whatever the wrapped
516  // callable returns. This allows for compatibility with existing uses like
517  // the following, when the mocked function returns void:
518  //
519  // EXPECT_CALL(mock_fn_, Call)
520  // .WillOnce([&] {
521  // [...]
522  // return 0;
523  // });
524  //
525  // Such a callable can be turned into std::function<void()>. If we use an
526  // explicit return type of Result here then it *doesn't* work with
527  // std::function, because we'll get a "void function should not return a
528  // value" error.
529  //
530  // We need not worry about incompatible result types because the SFINAE on
531  // OnceAction already checks this for us. std::is_invocable_r_v itself makes
532  // the same allowance for void result types.
533  template <typename... ArgRefs>
534  internal::call_result_t<Callable, ArgRefs...> operator()(
535  ArgRefs&&... args) const {
536  return std::move(*callable_)(std::forward<ArgRefs>(args)...);
537  }
538 
539  private:
540  // We must put the callable on the heap so that we are copyable, which
541  // std::function needs.
542  std::shared_ptr<Callable> callable_;
543  };
544 
545  // An adaptor that makes a callable that accepts zero arguments callable with
546  // our mocked arguments.
547  template <typename Callable>
548  struct IgnoreIncomingArguments {
549  internal::call_result_t<Callable> operator()(Args&&...) {
550  return std::move(callable)();
551  }
552 
553  Callable callable;
554  };
555 
556  std::function<Result(Args...)> function_;
557 };
558 
559 // When an unexpected function call is encountered, Google Mock will
560 // let it return a default value if the user has specified one for its
561 // return type, or if the return type has a built-in default value;
562 // otherwise Google Mock won't know what value to return and will have
563 // to abort the process.
564 //
565 // The DefaultValue<T> class allows a user to specify the
566 // default value for a type T that is both copyable and publicly
567 // destructible (i.e. anything that can be used as a function return
568 // type). The usage is:
569 //
570 // // Sets the default value for type T to be foo.
571 // DefaultValue<T>::Set(foo);
572 template <typename T>
574  public:
575  // Sets the default value for type T; requires T to be
576  // copy-constructable and have a public destructor.
577  static void Set(T x) {
578  delete producer_;
579  producer_ = new FixedValueProducer(x);
580  }
581 
582  // Provides a factory function to be called to generate the default value.
583  // This method can be used even if T is only move-constructible, but it is not
584  // limited to that case.
585  typedef T (*FactoryFunction)();
586  static void SetFactory(FactoryFunction factory) {
587  delete producer_;
588  producer_ = new FactoryValueProducer(factory);
589  }
590 
591  // Unsets the default value for type T.
592  static void Clear() {
593  delete producer_;
594  producer_ = nullptr;
595  }
596 
597  // Returns true if and only if the user has set the default value for type T.
598  static bool IsSet() { return producer_ != nullptr; }
599 
600  // Returns true if T has a default return value set by the user or there
601  // exists a built-in default value.
602  static bool Exists() {
603  return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
604  }
605 
606  // Returns the default value for type T if the user has set one;
607  // otherwise returns the built-in default value. Requires that Exists()
608  // is true, which ensures that the return value is well-defined.
609  static T Get() {
610  return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
611  : producer_->Produce();
612  }
613 
614  private:
615  class ValueProducer {
616  public:
617  virtual ~ValueProducer() {}
618  virtual T Produce() = 0;
619  };
620 
621  class FixedValueProducer : public ValueProducer {
622  public:
623  explicit FixedValueProducer(T value) : value_(value) {}
624  T Produce() override { return value_; }
625 
626  private:
627  const T value_;
628  FixedValueProducer(const FixedValueProducer&) = delete;
629  FixedValueProducer& operator=(const FixedValueProducer&) = delete;
630  };
631 
632  class FactoryValueProducer : public ValueProducer {
633  public:
634  explicit FactoryValueProducer(FactoryFunction factory)
635  : factory_(factory) {}
636  T Produce() override { return factory_(); }
637 
638  private:
639  const FactoryFunction factory_;
640  FactoryValueProducer(const FactoryValueProducer&) = delete;
641  FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
642  };
643 
644  static ValueProducer* producer_;
645 };
646 
647 // This partial specialization allows a user to set default values for
648 // reference types.
649 template <typename T>
650 class DefaultValue<T&> {
651  public:
652  // Sets the default value for type T&.
653  static void Set(T& x) { // NOLINT
654  address_ = &x;
655  }
656 
657  // Unsets the default value for type T&.
658  static void Clear() { address_ = nullptr; }
659 
660  // Returns true if and only if the user has set the default value for type T&.
661  static bool IsSet() { return address_ != nullptr; }
662 
663  // Returns true if T has a default return value set by the user or there
664  // exists a built-in default value.
665  static bool Exists() {
666  return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
667  }
668 
669  // Returns the default value for type T& if the user has set one;
670  // otherwise returns the built-in default value if there is one;
671  // otherwise aborts the process.
672  static T& Get() {
673  return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
674  : *address_;
675  }
676 
677  private:
678  static T* address_;
679 };
680 
681 // This specialization allows DefaultValue<void>::Get() to
682 // compile.
683 template <>
684 class DefaultValue<void> {
685  public:
686  static bool Exists() { return true; }
687  static void Get() {}
688 };
689 
690 // Points to the user-set default value for type T.
691 template <typename T>
693 
694 // Points to the user-set default value for type T&.
695 template <typename T>
696 T* DefaultValue<T&>::address_ = nullptr;
697 
698 // Implement this interface to define an action for function type F.
699 template <typename F>
701  public:
704 
706  virtual ~ActionInterface() {}
707 
708  // Performs the action. This method is not const, as in general an
709  // action can have side effects and be stateful. For example, a
710  // get-the-next-element-from-the-collection action will need to
711  // remember the current element.
712  virtual Result Perform(const ArgumentTuple& args) = 0;
713 
714  private:
715  ActionInterface(const ActionInterface&) = delete;
716  ActionInterface& operator=(const ActionInterface&) = delete;
717 };
718 
719 template <typename F>
720 class Action;
721 
722 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
723 // object that represents an action to be taken when a mock function of type
724 // R(Args...) is called. The implementation of Action<T> is just a
725 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
726 // can view an object implementing ActionInterface<F> as a concrete action
727 // (including its current state), and an Action<F> object as a handle to it.
728 template <typename R, typename... Args>
729 class Action<R(Args...)> {
730  private:
731  using F = R(Args...);
732 
733  // Adapter class to allow constructing Action from a legacy ActionInterface.
734  // New code should create Actions from functors instead.
735  struct ActionAdapter {
736  // Adapter must be copyable to satisfy std::function requirements.
737  ::std::shared_ptr<ActionInterface<F>> impl_;
738 
739  template <typename... InArgs>
740  typename internal::Function<F>::Result operator()(InArgs&&... args) {
741  return impl_->Perform(
742  ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
743  }
744  };
745 
746  template <typename G>
747  using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
748 
749  public:
752 
753  // Constructs a null Action. Needed for storing Action objects in
754  // STL containers.
755  Action() {}
756 
757  // Construct an Action from a specified callable.
758  // This cannot take std::function directly, because then Action would not be
759  // directly constructible from lambda (it would require two conversions).
760  template <
761  typename G,
762  typename = typename std::enable_if<internal::disjunction<
763  IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
764  G>>::value>::type>
765  Action(G&& fun) { // NOLINT
766  Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
767  }
768 
769  // Constructs an Action from its implementation.
770  explicit Action(ActionInterface<F>* impl)
771  : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
772 
773  // This constructor allows us to turn an Action<Func> object into an
774  // Action<F>, as long as F's arguments can be implicitly converted
775  // to Func's and Func's return type can be implicitly converted to F's.
776  template <typename Func>
777  Action(const Action<Func>& action) // NOLINT
778  : fun_(action.fun_) {}
779 
780  // Returns true if and only if this is the DoDefault() action.
781  bool IsDoDefault() const { return fun_ == nullptr; }
782 
783  // Performs the action. Note that this method is const even though
784  // the corresponding method in ActionInterface is not. The reason
785  // is that a const Action<F> means that it cannot be re-bound to
786  // another concrete action, not that the concrete action it binds to
787  // cannot change state. (Think of the difference between a const
788  // pointer and a pointer to const.)
789  Result Perform(ArgumentTuple args) const {
790  if (IsDoDefault()) {
791  internal::IllegalDoDefault(__FILE__, __LINE__);
792  }
793  return internal::Apply(fun_, ::std::move(args));
794  }
795 
796  // An action can be used as a OnceAction, since it's obviously safe to call it
797  // once.
798  operator OnceAction<F>() const { // NOLINT
799  // Return a OnceAction-compatible callable that calls Perform with the
800  // arguments it is provided. We could instead just return fun_, but then
801  // we'd need to handle the IsDoDefault() case separately.
802  struct OA {
803  Action<F> action;
804 
805  R operator()(Args... args) && {
806  return action.Perform(
807  std::forward_as_tuple(std::forward<Args>(args)...));
808  }
809  };
810 
811  return OA{*this};
812  }
813 
814  private:
815  template <typename G>
816  friend class Action;
817 
818  template <typename G>
819  void Init(G&& g, ::std::true_type) {
820  fun_ = ::std::forward<G>(g);
821  }
822 
823  template <typename G>
824  void Init(G&& g, ::std::false_type) {
825  fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
826  }
827 
828  template <typename FunctionImpl>
829  struct IgnoreArgs {
830  template <typename... InArgs>
831  Result operator()(const InArgs&...) const {
832  return function_impl();
833  }
834 
835  FunctionImpl function_impl;
836  };
837 
838  // fun_ is an empty function if and only if this is the DoDefault() action.
839  ::std::function<F> fun_;
840 };
841 
842 // The PolymorphicAction class template makes it easy to implement a
843 // polymorphic action (i.e. an action that can be used in mock
844 // functions of than one type, e.g. Return()).
845 //
846 // To define a polymorphic action, a user first provides a COPYABLE
847 // implementation class that has a Perform() method template:
848 //
849 // class FooAction {
850 // public:
851 // template <typename Result, typename ArgumentTuple>
852 // Result Perform(const ArgumentTuple& args) const {
853 // // Processes the arguments and returns a result, using
854 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
855 // }
856 // ...
857 // };
858 //
859 // Then the user creates the polymorphic action using
860 // MakePolymorphicAction(object) where object has type FooAction. See
861 // the definition of Return(void) and SetArgumentPointee<N>(value) for
862 // complete examples.
863 template <typename Impl>
865  public:
866  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
867 
868  template <typename F>
869  operator Action<F>() const {
870  return Action<F>(new MonomorphicImpl<F>(impl_));
871  }
872 
873  private:
874  template <typename F>
875  class MonomorphicImpl : public ActionInterface<F> {
876  public:
877  typedef typename internal::Function<F>::Result Result;
878  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
879 
880  explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
881 
882  Result Perform(const ArgumentTuple& args) override {
883  return impl_.template Perform<Result>(args);
884  }
885 
886  private:
887  Impl impl_;
888  };
889 
890  Impl impl_;
891 };
892 
893 // Creates an Action from its implementation and returns it. The
894 // created Action object owns the implementation.
895 template <typename F>
897  return Action<F>(impl);
898 }
899 
900 // Creates a polymorphic action from its implementation. This is
901 // easier to use than the PolymorphicAction<Impl> constructor as it
902 // doesn't require you to explicitly write the template argument, e.g.
903 //
904 // MakePolymorphicAction(foo);
905 // vs
906 // PolymorphicAction<TypeOfFoo>(foo);
907 template <typename Impl>
909  return PolymorphicAction<Impl>(impl);
910 }
911 
912 namespace internal {
913 
914 // Helper struct to specialize ReturnAction to execute a move instead of a copy
915 // on return. Useful for move-only types, but could be used on any type.
916 template <typename T>
918  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
920 };
921 
922 // The general implementation of Return(R). Specializations follow below.
923 template <typename R>
924 class ReturnAction final {
925  public:
926  explicit ReturnAction(R value) : value_(std::move(value)) {}
927 
928  template <typename U, typename... Args,
929  typename = typename std::enable_if<conjunction<
930  // See the requirements documented on Return.
933  std::is_convertible<R, U>, //
934  std::is_move_constructible<U>>::value>::type>
935  operator OnceAction<U(Args...)>() && { // NOLINT
936  return Impl<U>(std::move(value_));
937  }
938 
939  template <typename U, typename... Args,
940  typename = typename std::enable_if<conjunction<
941  // See the requirements documented on Return.
942  negation<std::is_same<void, U>>, //
943  negation<std::is_reference<U>>, //
944  std::is_convertible<const R&, U>, //
945  std::is_copy_constructible<U>>::value>::type>
946  operator Action<U(Args...)>() const { // NOLINT
947  return Impl<U>(value_);
948  }
949 
950  private:
951  // Implements the Return(x) action for a mock function that returns type U.
952  template <typename U>
953  class Impl final {
954  public:
955  // The constructor used when the return value is allowed to move from the
956  // input value (i.e. we are converting to OnceAction).
957  explicit Impl(R&& input_value)
958  : state_(new State(std::move(input_value))) {}
959 
960  // The constructor used when the return value is not allowed to move from
961  // the input value (i.e. we are converting to Action).
962  explicit Impl(const R& input_value) : state_(new State(input_value)) {}
963 
964  U operator()() && { return std::move(state_->value); }
965  U operator()() const& { return state_->value; }
966 
967  private:
968  // We put our state on the heap so that the compiler-generated copy/move
969  // constructors work correctly even when U is a reference-like type. This is
970  // necessary only because we eagerly create State::value (see the note on
971  // that symbol for details). If we instead had only the input value as a
972  // member then the default constructors would work fine.
973  //
974  // For example, when R is std::string and U is std::string_view, value is a
975  // reference to the string backed by input_value. The copy constructor would
976  // copy both, so that we wind up with a new input_value object (with the
977  // same contents) and a reference to the *old* input_value object rather
978  // than the new one.
979  struct State {
980  explicit State(const R& input_value_in)
981  : input_value(input_value_in),
982  // Make an implicit conversion to Result before initializing the U
983  // object we store, avoiding calling any explicit constructor of U
984  // from R.
985  //
986  // This simulates the language rules: a function with return type U
987  // that does `return R()` requires R to be implicitly convertible to
988  // U, and uses that path for the conversion, even U Result has an
989  // explicit constructor from R.
990  value(ImplicitCast_<U>(internal::as_const(input_value))) {}
991 
992  // As above, but for the case where we're moving from the ReturnAction
993  // object because it's being used as a OnceAction.
994  explicit State(R&& input_value_in)
995  : input_value(std::move(input_value_in)),
996  // For the same reason as above we make an implicit conversion to U
997  // before initializing the value.
998  //
999  // Unlike above we provide the input value as an rvalue to the
1000  // implicit conversion because this is a OnceAction: it's fine if it
1001  // wants to consume the input value.
1002  value(ImplicitCast_<U>(std::move(input_value))) {}
1003 
1004  // A copy of the value originally provided by the user. We retain this in
1005  // addition to the value of the mock function's result type below in case
1006  // the latter is a reference-like type. See the std::string_view example
1007  // in the documentation on Return.
1008  R input_value;
1009 
1010  // The value we actually return, as the type returned by the mock function
1011  // itself.
1012  //
1013  // We eagerly initialize this here, rather than lazily doing the implicit
1014  // conversion automatically each time Perform is called, for historical
1015  // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1016  // made the Action<U()> conversion operator eagerly convert the R value to
1017  // U, but without keeping the R alive. This broke the use case discussed
1018  // in the documentation for Return, making reference-like types such as
1019  // std::string_view not safe to use as U where the input type R is a
1020  // value-like type such as std::string.
1021  //
1022  // The example the commit gave was not very clear, nor was the issue
1023  // thread (https://github.com/google/googlemock/issues/86), but it seems
1024  // the worry was about reference-like input types R that flatten to a
1025  // value-like type U when being implicitly converted. An example of this
1026  // is std::vector<bool>::reference, which is often a proxy type with an
1027  // reference to the underlying vector:
1028  //
1029  // // Helper method: have the mock function return bools according
1030  // // to the supplied script.
1031  // void SetActions(MockFunction<bool(size_t)>& mock,
1032  // const std::vector<bool>& script) {
1033  // for (size_t i = 0; i < script.size(); ++i) {
1034  // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1035  // }
1036  // }
1037  //
1038  // TEST(Foo, Bar) {
1039  // // Set actions using a temporary vector, whose operator[]
1040  // // returns proxy objects that references that will be
1041  // // dangling once the call to SetActions finishes and the
1042  // // vector is destroyed.
1043  // MockFunction<bool(size_t)> mock;
1044  // SetActions(mock, {false, true});
1045  //
1046  // EXPECT_FALSE(mock.AsStdFunction()(0));
1047  // EXPECT_TRUE(mock.AsStdFunction()(1));
1048  // }
1049  //
1050  // This eager conversion helps with a simple case like this, but doesn't
1051  // fully make these types work in general. For example the following still
1052  // uses a dangling reference:
1053  //
1054  // TEST(Foo, Baz) {
1055  // MockFunction<std::vector<std::string>()> mock;
1056  //
1057  // // Return the same vector twice, and then the empty vector
1058  // // thereafter.
1059  // auto action = Return(std::initializer_list<std::string>{
1060  // "taco", "burrito",
1061  // });
1062  //
1063  // EXPECT_CALL(mock, Call)
1064  // .WillOnce(action)
1065  // .WillOnce(action)
1066  // .WillRepeatedly(Return(std::vector<std::string>{}));
1067  //
1068  // EXPECT_THAT(mock.AsStdFunction()(),
1069  // ElementsAre("taco", "burrito"));
1070  // EXPECT_THAT(mock.AsStdFunction()(),
1071  // ElementsAre("taco", "burrito"));
1072  // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1073  // }
1074  //
1075  U value;
1076  };
1077 
1078  const std::shared_ptr<State> state_;
1079  };
1080 
1081  R value_;
1082 };
1083 
1084 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1085 //
1086 // This version applies the type system-defeating hack of moving from T even in
1087 // the const call operator, checking at runtime that it isn't called more than
1088 // once, since the user has declared their intent to do so by using ByMove.
1089 template <typename T>
1090 class ReturnAction<ByMoveWrapper<T>> final {
1091  public:
1092  explicit ReturnAction(ByMoveWrapper<T> wrapper)
1093  : state_(new State(std::move(wrapper.payload))) {}
1094 
1095  T operator()() const {
1096  GTEST_CHECK_(!state_->called)
1097  << "A ByMove() action must be performed at most once.";
1098 
1099  state_->called = true;
1100  return std::move(state_->value);
1101  }
1102 
1103  private:
1104  // We store our state on the heap so that we are copyable as required by
1105  // Action, despite the fact that we are stateful and T may not be copyable.
1106  struct State {
1107  explicit State(T&& value_in) : value(std::move(value_in)) {}
1108 
1109  T value;
1110  bool called = false;
1111  };
1112 
1113  const std::shared_ptr<State> state_;
1114 };
1115 
1116 // Implements the ReturnNull() action.
1118  public:
1119  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1120  // this is enforced by returning nullptr, and in non-C++11 by asserting a
1121  // pointer type on compile time.
1122  template <typename Result, typename ArgumentTuple>
1123  static Result Perform(const ArgumentTuple&) {
1124  return nullptr;
1125  }
1126 };
1127 
1128 // Implements the Return() action.
1130  public:
1131  // Allows Return() to be used in any void-returning function.
1132  template <typename Result, typename ArgumentTuple>
1133  static void Perform(const ArgumentTuple&) {
1134  static_assert(std::is_void<Result>::value, "Result should be void.");
1135  }
1136 };
1137 
1138 // Implements the polymorphic ReturnRef(x) action, which can be used
1139 // in any function that returns a reference to the type of x,
1140 // regardless of the argument types.
1141 template <typename T>
1143  public:
1144  // Constructs a ReturnRefAction object from the reference to be returned.
1145  explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
1146 
1147  // This template type conversion operator allows ReturnRef(x) to be
1148  // used in ANY function that returns a reference to x's type.
1149  template <typename F>
1150  operator Action<F>() const {
1151  typedef typename Function<F>::Result Result;
1152  // Asserts that the function return type is a reference. This
1153  // catches the user error of using ReturnRef(x) when Return(x)
1154  // should be used, and generates some helpful error message.
1155  static_assert(std::is_reference<Result>::value,
1156  "use Return instead of ReturnRef to return a value");
1157  return Action<F>(new Impl<F>(ref_));
1158  }
1159 
1160  private:
1161  // Implements the ReturnRef(x) action for a particular function type F.
1162  template <typename F>
1163  class Impl : public ActionInterface<F> {
1164  public:
1165  typedef typename Function<F>::Result Result;
1166  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1167 
1168  explicit Impl(T& ref) : ref_(ref) {} // NOLINT
1169 
1170  Result Perform(const ArgumentTuple&) override { return ref_; }
1171 
1172  private:
1173  T& ref_;
1174  };
1175 
1176  T& ref_;
1177 };
1178 
1179 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1180 // used in any function that returns a reference to the type of x,
1181 // regardless of the argument types.
1182 template <typename T>
1184  public:
1185  // Constructs a ReturnRefOfCopyAction object from the reference to
1186  // be returned.
1187  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
1188 
1189  // This template type conversion operator allows ReturnRefOfCopy(x) to be
1190  // used in ANY function that returns a reference to x's type.
1191  template <typename F>
1192  operator Action<F>() const {
1193  typedef typename Function<F>::Result Result;
1194  // Asserts that the function return type is a reference. This
1195  // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1196  // should be used, and generates some helpful error message.
1197  static_assert(std::is_reference<Result>::value,
1198  "use Return instead of ReturnRefOfCopy to return a value");
1199  return Action<F>(new Impl<F>(value_));
1200  }
1201 
1202  private:
1203  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1204  template <typename F>
1205  class Impl : public ActionInterface<F> {
1206  public:
1207  typedef typename Function<F>::Result Result;
1208  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1209 
1210  explicit Impl(const T& value) : value_(value) {} // NOLINT
1211 
1212  Result Perform(const ArgumentTuple&) override { return value_; }
1213 
1214  private:
1215  T value_;
1216  };
1217 
1218  const T value_;
1219 };
1220 
1221 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1222 // used in any function that returns the element_type of v.
1223 template <typename T>
1225  public:
1226  explicit ReturnRoundRobinAction(std::vector<T> values) {
1227  GTEST_CHECK_(!values.empty())
1228  << "ReturnRoundRobin requires at least one element.";
1229  state_->values = std::move(values);
1230  }
1231 
1232  template <typename... Args>
1233  T operator()(Args&&...) const {
1234  return state_->Next();
1235  }
1236 
1237  private:
1238  struct State {
1239  T Next() {
1240  T ret_val = values[i++];
1241  if (i == values.size()) i = 0;
1242  return ret_val;
1243  }
1244 
1245  std::vector<T> values;
1246  size_t i = 0;
1247  };
1248  std::shared_ptr<State> state_ = std::make_shared<State>();
1249 };
1250 
1251 // Implements the polymorphic DoDefault() action.
1253  public:
1254  // This template type conversion operator allows DoDefault() to be
1255  // used in any function.
1256  template <typename F>
1257  operator Action<F>() const {
1258  return Action<F>();
1259  } // NOLINT
1260 };
1261 
1262 // Implements the Assign action to set a given pointer referent to a
1263 // particular value.
1264 template <typename T1, typename T2>
1266  public:
1267  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1268 
1269  template <typename Result, typename ArgumentTuple>
1270  void Perform(const ArgumentTuple& /* args */) const {
1271  *ptr_ = value_;
1272  }
1273 
1274  private:
1275  T1* const ptr_;
1276  const T2 value_;
1277 };
1278 
1279 #if !GTEST_OS_WINDOWS_MOBILE
1280 
1281 // Implements the SetErrnoAndReturn action to simulate return from
1282 // various system calls and libc functions.
1283 template <typename T>
1285  public:
1286  SetErrnoAndReturnAction(int errno_value, T result)
1287  : errno_(errno_value), result_(result) {}
1288  template <typename Result, typename ArgumentTuple>
1289  Result Perform(const ArgumentTuple& /* args */) const {
1290  errno = errno_;
1291  return result_;
1292  }
1293 
1294  private:
1295  const int errno_;
1296  const T result_;
1297 };
1298 
1299 #endif // !GTEST_OS_WINDOWS_MOBILE
1300 
1301 // Implements the SetArgumentPointee<N>(x) action for any function
1302 // whose N-th argument (0-based) is a pointer to x's type.
1303 template <size_t N, typename A, typename = void>
1306 
1307  template <typename... Args>
1308  void operator()(const Args&... args) const {
1309  *::std::get<N>(std::tie(args...)) = value;
1310  }
1311 };
1312 
1313 // Implements the Invoke(object_ptr, &Class::Method) action.
1314 template <class Class, typename MethodPtr>
1316  Class* const obj_ptr;
1317  const MethodPtr method_ptr;
1318 
1319  template <typename... Args>
1320  auto operator()(Args&&... args) const
1321  -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1322  return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1323  }
1324 };
1325 
1326 // Implements the InvokeWithoutArgs(f) action. The template argument
1327 // FunctionImpl is the implementation type of f, which can be either a
1328 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
1329 // Action<F> as long as f's type is compatible with F.
1330 template <typename FunctionImpl>
1332  FunctionImpl function_impl;
1333 
1334  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1335  // compatible with f.
1336  template <typename... Args>
1337  auto operator()(const Args&...) -> decltype(function_impl()) {
1338  return function_impl();
1339  }
1340 };
1341 
1342 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1343 template <class Class, typename MethodPtr>
1345  Class* const obj_ptr;
1346  const MethodPtr method_ptr;
1347 
1348  using ReturnType =
1349  decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1350 
1351  template <typename... Args>
1352  ReturnType operator()(const Args&...) const {
1353  return (obj_ptr->*method_ptr)();
1354  }
1355 };
1356 
1357 // Implements the IgnoreResult(action) action.
1358 template <typename A>
1360  public:
1361  explicit IgnoreResultAction(const A& action) : action_(action) {}
1362 
1363  template <typename F>
1364  operator Action<F>() const {
1365  // Assert statement belongs here because this is the best place to verify
1366  // conditions on F. It produces the clearest error messages
1367  // in most compilers.
1368  // Impl really belongs in this scope as a local class but can't
1369  // because MSVC produces duplicate symbols in different translation units
1370  // in this case. Until MS fixes that bug we put Impl into the class scope
1371  // and put the typedef both here (for use in assert statement) and
1372  // in the Impl class. But both definitions must be the same.
1373  typedef typename internal::Function<F>::Result Result;
1374 
1375  // Asserts at compile time that F returns void.
1376  static_assert(std::is_void<Result>::value, "Result type should be void.");
1377 
1378  return Action<F>(new Impl<F>(action_));
1379  }
1380 
1381  private:
1382  template <typename F>
1383  class Impl : public ActionInterface<F> {
1384  public:
1385  typedef typename internal::Function<F>::Result Result;
1386  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1387 
1388  explicit Impl(const A& action) : action_(action) {}
1389 
1390  void Perform(const ArgumentTuple& args) override {
1391  // Performs the action and ignores its result.
1392  action_.Perform(args);
1393  }
1394 
1395  private:
1396  // Type OriginalFunction is the same as F except that its return
1397  // type is IgnoredValue.
1398  typedef
1399  typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1400 
1401  const Action<OriginalFunction> action_;
1402  };
1403 
1404  const A action_;
1405 };
1406 
1407 template <typename InnerAction, size_t... I>
1409  InnerAction inner_action;
1410 
1411  // The signature of the function as seen by the inner action, given an out
1412  // action with the given result and argument types.
1413  template <typename R, typename... Args>
1414  using InnerSignature =
1415  R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1416 
1417  // Rather than a call operator, we must define conversion operators to
1418  // particular action types. This is necessary for embedded actions like
1419  // DoDefault(), which rely on an action conversion operators rather than
1420  // providing a call operator because even with a particular set of arguments
1421  // they don't have a fixed return type.
1422 
1423  template <typename R, typename... Args,
1424  typename std::enable_if<
1425  std::is_convertible<
1426  InnerAction,
1427  // Unfortunately we can't use the InnerSignature alias here;
1428  // MSVC complains about the I parameter pack not being
1429  // expanded (error C3520) despite it being expanded in the
1430  // type alias.
1431  // TupleElement is also an MSVC workaround.
1432  // See its definition for details.
1434  I, std::tuple<Args...>>...)>>::value,
1435  int>::type = 0>
1436  operator OnceAction<R(Args...)>() && { // NOLINT
1437  struct OA {
1438  OnceAction<InnerSignature<R, Args...>> inner_action;
1439 
1440  R operator()(Args&&... args) && {
1441  return std::move(inner_action)
1442  .Call(std::get<I>(
1443  std::forward_as_tuple(std::forward<Args>(args)...))...);
1444  }
1445  };
1446 
1447  return OA{std::move(inner_action)};
1448  }
1449 
1450  template <typename R, typename... Args,
1451  typename std::enable_if<
1452  std::is_convertible<
1453  const InnerAction&,
1454  // Unfortunately we can't use the InnerSignature alias here;
1455  // MSVC complains about the I parameter pack not being
1456  // expanded (error C3520) despite it being expanded in the
1457  // type alias.
1458  // TupleElement is also an MSVC workaround.
1459  // See its definition for details.
1461  I, std::tuple<Args...>>...)>>::value,
1462  int>::type = 0>
1463  operator Action<R(Args...)>() const { // NOLINT
1464  Action<InnerSignature<R, Args...>> converted(inner_action);
1465 
1466  return [converted](Args&&... args) -> R {
1467  return converted.Perform(std::forward_as_tuple(
1468  std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1469  };
1470  }
1471 };
1472 
1473 template <typename... Actions>
1475 
1476 // Base case: only a single action.
1477 template <typename FinalAction>
1478 class DoAllAction<FinalAction> {
1479  public:
1480  struct UserConstructorTag {};
1481 
1482  template <typename T>
1483  explicit DoAllAction(UserConstructorTag, T&& action)
1484  : final_action_(std::forward<T>(action)) {}
1485 
1486  // Rather than a call operator, we must define conversion operators to
1487  // particular action types. This is necessary for embedded actions like
1488  // DoDefault(), which rely on an action conversion operators rather than
1489  // providing a call operator because even with a particular set of arguments
1490  // they don't have a fixed return type.
1491 
1492  template <typename R, typename... Args,
1493  typename std::enable_if<
1494  std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1495  int>::type = 0>
1496  operator OnceAction<R(Args...)>() && { // NOLINT
1497  return std::move(final_action_);
1498  }
1499 
1500  template <
1501  typename R, typename... Args,
1502  typename std::enable_if<
1503  std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1504  int>::type = 0>
1505  operator Action<R(Args...)>() const { // NOLINT
1506  return final_action_;
1507  }
1508 
1509  private:
1510  FinalAction final_action_;
1511 };
1512 
1513 // Recursive case: support N actions by calling the initial action and then
1514 // calling through to the base class containing N-1 actions.
1515 template <typename InitialAction, typename... OtherActions>
1516 class DoAllAction<InitialAction, OtherActions...>
1517  : private DoAllAction<OtherActions...> {
1518  private:
1519  using Base = DoAllAction<OtherActions...>;
1520 
1521  // The type of reference that should be provided to an initial action for a
1522  // mocked function parameter of type T.
1523  //
1524  // There are two quirks here:
1525  //
1526  // * Unlike most forwarding functions, we pass scalars through by value.
1527  // This isn't strictly necessary because an lvalue reference would work
1528  // fine too and be consistent with other non-reference types, but it's
1529  // perhaps less surprising.
1530  //
1531  // For example if the mocked function has signature void(int), then it
1532  // might seem surprising for the user's initial action to need to be
1533  // convertible to Action<void(const int&)>. This is perhaps less
1534  // surprising for a non-scalar type where there may be a performance
1535  // impact, or it might even be impossible, to pass by value.
1536  //
1537  // * More surprisingly, `const T&` is often not a const reference type.
1538  // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1539  // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1540  // U&. In other words, we may hand over a non-const reference.
1541  //
1542  // So for example, given some non-scalar type Obj we have the following
1543  // mappings:
1544  //
1545  // T InitialActionArgType<T>
1546  // ------- -----------------------
1547  // Obj const Obj&
1548  // Obj& Obj&
1549  // Obj&& Obj&
1550  // const Obj const Obj&
1551  // const Obj& const Obj&
1552  // const Obj&& const Obj&
1553  //
1554  // In other words, the initial actions get a mutable view of an non-scalar
1555  // argument if and only if the mock function itself accepts a non-const
1556  // reference type. They are never given an rvalue reference to an
1557  // non-scalar type.
1558  //
1559  // This situation makes sense if you imagine use with a matcher that is
1560  // designed to write through a reference. For example, if the caller wants
1561  // to fill in a reference argument and then return a canned value:
1562  //
1563  // EXPECT_CALL(mock, Call)
1564  // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1565  //
1566  template <typename T>
1567  using InitialActionArgType =
1568  typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1569 
1570  public:
1571  struct UserConstructorTag {};
1572 
1573  template <typename T, typename... U>
1574  explicit DoAllAction(UserConstructorTag, T&& initial_action,
1575  U&&... other_actions)
1576  : Base({}, std::forward<U>(other_actions)...),
1577  initial_action_(std::forward<T>(initial_action)) {}
1578 
1579  template <typename R, typename... Args,
1580  typename std::enable_if<
1581  conjunction<
1582  // Both the initial action and the rest must support
1583  // conversion to OnceAction.
1584  std::is_convertible<
1585  InitialAction,
1587  std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1588  int>::type = 0>
1589  operator OnceAction<R(Args...)>() && { // NOLINT
1590  // Return an action that first calls the initial action with arguments
1591  // filtered through InitialActionArgType, then forwards arguments directly
1592  // to the base class to deal with the remaining actions.
1593  struct OA {
1594  OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1595  OnceAction<R(Args...)> remaining_actions;
1596 
1597  R operator()(Args... args) && {
1598  std::move(initial_action)
1599  .Call(static_cast<InitialActionArgType<Args>>(args)...);
1600 
1601  return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1602  }
1603  };
1604 
1605  return OA{
1606  std::move(initial_action_),
1607  std::move(static_cast<Base&>(*this)),
1608  };
1609  }
1610 
1611  template <
1612  typename R, typename... Args,
1613  typename std::enable_if<
1614  conjunction<
1615  // Both the initial action and the rest must support conversion to
1616  // Action.
1617  std::is_convertible<const InitialAction&,
1619  std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1620  int>::type = 0>
1621  operator Action<R(Args...)>() const { // NOLINT
1622  // Return an action that first calls the initial action with arguments
1623  // filtered through InitialActionArgType, then forwards arguments directly
1624  // to the base class to deal with the remaining actions.
1625  struct OA {
1626  Action<void(InitialActionArgType<Args>...)> initial_action;
1627  Action<R(Args...)> remaining_actions;
1628 
1629  R operator()(Args... args) const {
1630  initial_action.Perform(std::forward_as_tuple(
1631  static_cast<InitialActionArgType<Args>>(args)...));
1632 
1633  return remaining_actions.Perform(
1634  std::forward_as_tuple(std::forward<Args>(args)...));
1635  }
1636  };
1637 
1638  return OA{
1639  initial_action_,
1640  static_cast<const Base&>(*this),
1641  };
1642  }
1643 
1644  private:
1645  InitialAction initial_action_;
1646 };
1647 
1648 template <typename T, typename... Params>
1650  T* operator()() const {
1651  return internal::Apply(
1652  [](const Params&... unpacked_params) {
1653  return new T(unpacked_params...);
1654  },
1655  params);
1656  }
1657  std::tuple<Params...> params;
1658 };
1659 
1660 template <size_t k>
1662  template <typename... Args,
1663  typename = typename std::enable_if<(k < sizeof...(Args))>::type>
1664  auto operator()(Args&&... args) const -> decltype(std::get<k>(
1665  std::forward_as_tuple(std::forward<Args>(args)...))) {
1666  return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1667  }
1668 };
1669 
1670 template <size_t k, typename Ptr>
1672  Ptr pointer;
1673 
1674  template <typename... Args>
1675  void operator()(const Args&... args) const {
1676  *pointer = std::get<k>(std::tie(args...));
1677  }
1678 };
1679 
1680 template <size_t k, typename Ptr>
1682  Ptr pointer;
1683 
1684  template <typename... Args>
1685  void operator()(const Args&... args) const {
1686  *pointer = *std::get<k>(std::tie(args...));
1687  }
1688 };
1689 
1690 template <size_t k, typename T>
1693 
1694  template <typename... Args>
1695  void operator()(Args&&... args) const {
1696  using argk_type =
1697  typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1698  static_assert(std::is_lvalue_reference<argk_type>::value,
1699  "Argument must be a reference type.");
1700  std::get<k>(std::tie(args...)) = value;
1701  }
1702 };
1703 
1704 template <size_t k, typename I1, typename I2>
1706  I1 first;
1707  I2 last;
1708 
1709  template <typename... Args>
1710  void operator()(const Args&... args) const {
1711  auto value = std::get<k>(std::tie(args...));
1712  for (auto it = first; it != last; ++it, (void)++value) {
1713  *value = *it;
1714  }
1715  }
1716 };
1717 
1718 template <size_t k>
1720  template <typename... Args>
1721  void operator()(const Args&... args) const {
1722  delete std::get<k>(std::tie(args...));
1723  }
1724 };
1725 
1726 template <typename Ptr>
1728  Ptr pointer;
1729  template <typename... Args>
1730  auto operator()(const Args&...) const -> decltype(*pointer) {
1731  return *pointer;
1732  }
1733 };
1734 
1735 #if GTEST_HAS_EXCEPTIONS
1736 template <typename T>
1737 struct ThrowAction {
1738  T exception;
1739  // We use a conversion operator to adapt to any return type.
1740  template <typename R, typename... Args>
1741  operator Action<R(Args...)>() const { // NOLINT
1742  T copy = exception;
1743  return [copy](Args...) -> R { throw copy; };
1744  }
1745 };
1746 #endif // GTEST_HAS_EXCEPTIONS
1747 
1748 } // namespace internal
1749 
1750 // An Unused object can be implicitly constructed from ANY value.
1751 // This is handy when defining actions that ignore some or all of the
1752 // mock function arguments. For example, given
1753 //
1754 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1755 // MOCK_METHOD3(Bar, double(int index, double x, double y));
1756 //
1757 // instead of
1758 //
1759 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
1760 // return sqrt(x*x + y*y);
1761 // }
1762 // double DistanceToOriginWithIndex(int index, double x, double y) {
1763 // return sqrt(x*x + y*y);
1764 // }
1765 // ...
1766 // EXPECT_CALL(mock, Foo("abc", _, _))
1767 // .WillOnce(Invoke(DistanceToOriginWithLabel));
1768 // EXPECT_CALL(mock, Bar(5, _, _))
1769 // .WillOnce(Invoke(DistanceToOriginWithIndex));
1770 //
1771 // you could write
1772 //
1773 // // We can declare any uninteresting argument as Unused.
1774 // double DistanceToOrigin(Unused, double x, double y) {
1775 // return sqrt(x*x + y*y);
1776 // }
1777 // ...
1778 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1779 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1781 
1782 // Creates an action that does actions a1, a2, ..., sequentially in
1783 // each invocation. All but the last action will have a readonly view of the
1784 // arguments.
1785 template <typename... Action>
1787  Action&&... action) {
1789  {}, std::forward<Action>(action)...);
1790 }
1791 
1792 // WithArg<k>(an_action) creates an action that passes the k-th
1793 // (0-based) argument of the mock function to an_action and performs
1794 // it. It adapts an action accepting one argument to one that accepts
1795 // multiple arguments. For convenience, we also provide
1796 // WithArgs<k>(an_action) (defined below) as a synonym.
1797 template <size_t k, typename InnerAction>
1799  InnerAction&& action) {
1800  return {std::forward<InnerAction>(action)};
1801 }
1802 
1803 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1804 // the selected arguments of the mock function to an_action and
1805 // performs it. It serves as an adaptor between actions with
1806 // different argument lists.
1807 template <size_t k, size_t... ks, typename InnerAction>
1809 WithArgs(InnerAction&& action) {
1810  return {std::forward<InnerAction>(action)};
1811 }
1812 
1813 // WithoutArgs(inner_action) can be used in a mock function with a
1814 // non-empty argument list to perform inner_action, which takes no
1815 // argument. In other words, it adapts an action accepting no
1816 // argument to one that accepts (and ignores) arguments.
1817 template <typename InnerAction>
1818 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1819  InnerAction&& action) {
1820  return {std::forward<InnerAction>(action)};
1821 }
1822 
1823 // Creates an action that returns a value.
1824 //
1825 // The returned type can be used with a mock function returning a non-void,
1826 // non-reference type U as follows:
1827 //
1828 // * If R is convertible to U and U is move-constructible, then the action can
1829 // be used with WillOnce.
1830 //
1831 // * If const R& is convertible to U and U is copy-constructible, then the
1832 // action can be used with both WillOnce and WillRepeatedly.
1833 //
1834 // The mock expectation contains the R value from which the U return value is
1835 // constructed (a move/copy of the argument to Return). This means that the R
1836 // value will survive at least until the mock object's expectations are cleared
1837 // or the mock object is destroyed, meaning that U can safely be a
1838 // reference-like type such as std::string_view:
1839 //
1840 // // The mock function returns a view of a copy of the string fed to
1841 // // Return. The view is valid even after the action is performed.
1842 // MockFunction<std::string_view()> mock;
1843 // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1844 // const std::string_view result = mock.AsStdFunction()();
1845 // EXPECT_EQ("taco", result);
1846 //
1847 template <typename R>
1849  return internal::ReturnAction<R>(std::move(value));
1850 }
1851 
1852 // Creates an action that returns NULL.
1855 }
1856 
1857 // Creates an action that returns from a void function.
1860 }
1861 
1862 // Creates an action that returns the reference to a variable.
1863 template <typename R>
1866 }
1867 
1868 // Prevent using ReturnRef on reference to temporary.
1869 template <typename R, R* = nullptr>
1871 
1872 // Creates an action that returns the reference to a copy of the
1873 // argument. The copy is created when the action is constructed and
1874 // lives as long as the action.
1875 template <typename R>
1878 }
1879 
1880 // DEPRECATED: use Return(x) directly with WillOnce.
1881 //
1882 // Modifies the parent action (a Return() action) to perform a move of the
1883 // argument instead of a copy.
1884 // Return(ByMove()) actions can only be executed once and will assert this
1885 // invariant.
1886 template <typename R>
1888  return internal::ByMoveWrapper<R>(std::move(x));
1889 }
1890 
1891 // Creates an action that returns an element of `vals`. Calling this action will
1892 // repeatedly return the next value from `vals` until it reaches the end and
1893 // will restart from the beginning.
1894 template <typename T>
1896  return internal::ReturnRoundRobinAction<T>(std::move(vals));
1897 }
1898 
1899 // Creates an action that returns an element of `vals`. Calling this action will
1900 // repeatedly return the next value from `vals` until it reaches the end and
1901 // will restart from the beginning.
1902 template <typename T>
1904  std::initializer_list<T> vals) {
1905  return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1906 }
1907 
1908 // Creates an action that does the default action for the give mock function.
1910  return internal::DoDefaultAction();
1911 }
1912 
1913 // Creates an action that sets the variable pointed by the N-th
1914 // (0-based) function argument to 'value'.
1915 template <size_t N, typename T>
1917  return {std::move(value)};
1918 }
1919 
1920 // The following version is DEPRECATED.
1921 template <size_t N, typename T>
1923  return {std::move(value)};
1924 }
1925 
1926 // Creates an action that sets a pointer referent to a given value.
1927 template <typename T1, typename T2>
1930 }
1931 
1932 #if !GTEST_OS_WINDOWS_MOBILE
1933 
1934 // Creates an action that sets errno and returns the appropriate error.
1935 template <typename T>
1937  int errval, T result) {
1938  return MakePolymorphicAction(
1939  internal::SetErrnoAndReturnAction<T>(errval, result));
1940 }
1941 
1942 #endif // !GTEST_OS_WINDOWS_MOBILE
1943 
1944 // Various overloads for Invoke().
1945 
1946 // Legacy function.
1947 // Actions can now be implicitly constructed from callables. No need to create
1948 // wrapper objects.
1949 // This function exists for backwards compatibility.
1950 template <typename FunctionImpl>
1951 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1952  return std::forward<FunctionImpl>(function_impl);
1953 }
1954 
1955 // Creates an action that invokes the given method on the given object
1956 // with the mock function's arguments.
1957 template <class Class, typename MethodPtr>
1959  MethodPtr method_ptr) {
1960  return {obj_ptr, method_ptr};
1961 }
1962 
1963 // Creates an action that invokes 'function_impl' with no argument.
1964 template <typename FunctionImpl>
1966 InvokeWithoutArgs(FunctionImpl function_impl) {
1967  return {std::move(function_impl)};
1968 }
1969 
1970 // Creates an action that invokes the given method on the given object
1971 // with no argument.
1972 template <class Class, typename MethodPtr>
1974  Class* obj_ptr, MethodPtr method_ptr) {
1975  return {obj_ptr, method_ptr};
1976 }
1977 
1978 // Creates an action that performs an_action and throws away its
1979 // result. In other words, it changes the return type of an_action to
1980 // void. an_action MUST NOT return void, or the code won't compile.
1981 template <typename A>
1982 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1983  return internal::IgnoreResultAction<A>(an_action);
1984 }
1985 
1986 // Creates a reference wrapper for the given L-value. If necessary,
1987 // you can explicitly specify the type of the reference. For example,
1988 // suppose 'derived' is an object of type Derived, ByRef(derived)
1989 // would wrap a Derived&. If you want to wrap a const Base& instead,
1990 // where Base is a base class of Derived, just write:
1991 //
1992 // ByRef<const Base>(derived)
1993 //
1994 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1995 // However, it may still be used for consistency with ByMove().
1996 template <typename T>
1997 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
1998  return ::std::reference_wrapper<T>(l_value);
1999 }
2000 
2001 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2002 // instance of type T, constructed on the heap with constructor arguments
2003 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2004 template <typename T, typename... Params>
2006  Params&&... params) {
2007  return {std::forward_as_tuple(std::forward<Params>(params)...)};
2008 }
2009 
2010 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2011 template <size_t k>
2013  return {};
2014 }
2015 
2016 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2017 // mock function to *pointer.
2018 template <size_t k, typename Ptr>
2020  return {pointer};
2021 }
2022 
2023 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2024 // by the k-th (0-based) argument of the mock function to *pointer.
2025 template <size_t k, typename Ptr>
2027  return {pointer};
2028 }
2029 
2030 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2031 // referenced by the k-th (0-based) argument of the mock function.
2032 template <size_t k, typename T>
2034  T&& value) {
2035  return {std::forward<T>(value)};
2036 }
2037 
2038 // Action SetArrayArgument<k>(first, last) copies the elements in
2039 // source range [first, last) to the array pointed to by the k-th
2040 // (0-based) argument, which can be either a pointer or an
2041 // iterator. The action does not take ownership of the elements in the
2042 // source range.
2043 template <size_t k, typename I1, typename I2>
2045  I2 last) {
2046  return {first, last};
2047 }
2048 
2049 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2050 // function.
2051 template <size_t k>
2053  return {};
2054 }
2055 
2056 // This action returns the value pointed to by 'pointer'.
2057 template <typename Ptr>
2059  return {pointer};
2060 }
2061 
2062 // Action Throw(exception) can be used in a mock function of any type
2063 // to throw the given exception. Any copyable value can be thrown.
2064 #if GTEST_HAS_EXCEPTIONS
2065 template <typename T>
2067  return {std::forward<T>(exception)};
2068 }
2069 #endif // GTEST_HAS_EXCEPTIONS
2070 
2071 namespace internal {
2072 
2073 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2074 // defines an action that can be used in a mock function. Typically,
2075 // these actions only care about a subset of the arguments of the mock
2076 // function. For example, if such an action only uses the second
2077 // argument, it can be used in any mock function that takes >= 2
2078 // arguments where the type of the second argument is compatible.
2079 //
2080 // Therefore, the action implementation must be prepared to take more
2081 // arguments than it needs. The ExcessiveArg type is used to
2082 // represent those excessive arguments. In order to keep the compiler
2083 // error messages tractable, we define it in the testing namespace
2084 // instead of testing::internal. However, this is an INTERNAL TYPE
2085 // and subject to change without notice, so a user MUST NOT USE THIS
2086 // TYPE DIRECTLY.
2087 struct ExcessiveArg {};
2088 
2089 // Builds an implementation of an Action<> for some particular signature, using
2090 // a class defined by an ACTION* macro.
2091 template <typename F, typename Impl>
2092 struct ActionImpl;
2093 
2094 template <typename Impl>
2095 struct ImplBase {
2096  struct Holder {
2097  // Allows each copy of the Action<> to get to the Impl.
2098  explicit operator const Impl&() const { return *ptr; }
2099  std::shared_ptr<Impl> ptr;
2100  };
2101  using type = typename std::conditional<std::is_constructible<Impl>::value,
2103 };
2104 
2105 template <typename R, typename... Args, typename Impl>
2106 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2107  using Base = typename ImplBase<Impl>::type;
2108  using function_type = R(Args...);
2109  using args_type = std::tuple<Args...>;
2110 
2111  ActionImpl() = default; // Only defined if appropriate for Base.
2112  explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2113 
2114  R operator()(Args&&... arg) const {
2115  static constexpr size_t kMaxArgs =
2116  sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2118  MakeIndexSequence<10 - kMaxArgs>{},
2119  args_type{std::forward<Args>(arg)...});
2120  }
2121 
2122  template <std::size_t... arg_id, std::size_t... excess_id>
2124  const args_type& args) const {
2125  // Impl need not be specific to the signature of action being implemented;
2126  // only the implementing function body needs to have all of the specific
2127  // types instantiated. Up to 10 of the args that are provided by the
2128  // args_type get passed, followed by a dummy of unspecified type for the
2129  // remainder up to 10 explicit args.
2130  static constexpr ExcessiveArg kExcessArg{};
2131  return static_cast<const Impl&>(*this)
2132  .template gmock_PerformImpl<
2133  /*function_type=*/function_type, /*return_type=*/R,
2134  /*args_type=*/args_type,
2135  /*argN_type=*/
2137  /*args=*/args, std::get<arg_id>(args)...,
2138  ((void)excess_id, kExcessArg)...);
2139  }
2140 };
2141 
2142 // Stores a default-constructed Impl as part of the Action<>'s
2143 // std::function<>. The Impl should be trivial to copy.
2144 template <typename F, typename Impl>
2146  return ::testing::Action<F>(ActionImpl<F, Impl>());
2147 }
2148 
2149 // Stores just the one given instance of Impl.
2150 template <typename F, typename Impl>
2151 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2152  return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2153 }
2154 
2155 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2156  , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2157 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
2158  const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2159  GMOCK_INTERNAL_ARG_UNUSED, , 10)
2160 
2161 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2162 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2163  const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2164 
2165 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2166 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2167  GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2168 
2169 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2170 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2171  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2172 
2173 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2174 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2175  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2176 
2177 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2178  , param##_type gmock_p##i
2179 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2180  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2181 
2182 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2183  , std::forward<param##_type>(gmock_p##i)
2184 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2185  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2186 
2187 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2188  , param(::std::forward<param##_type>(gmock_p##i))
2189 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2190  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2191 
2192 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2193 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2194  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2195 
2196 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \
2197  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2198  class full_name { \
2199  public: \
2200  explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2201  : impl_(std::make_shared<gmock_Impl>( \
2202  GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
2203  full_name(const full_name&) = default; \
2204  full_name(full_name&&) noexcept = default; \
2205  template <typename F> \
2206  operator ::testing::Action<F>() const { \
2207  return ::testing::internal::MakeAction<F>(impl_); \
2208  } \
2209  \
2210  private: \
2211  class gmock_Impl { \
2212  public: \
2213  explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2214  : GMOCK_ACTION_INIT_PARAMS_(params) {} \
2215  template <typename function_type, typename return_type, \
2216  typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2217  return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2218  GMOCK_ACTION_FIELD_PARAMS_(params) \
2219  }; \
2220  std::shared_ptr<const gmock_Impl> impl_; \
2221  }; \
2222  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2223  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2224  GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
2225  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2226  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2227  GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
2228  return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
2229  GMOCK_ACTION_GVALUE_PARAMS_(params)); \
2230  } \
2231  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2232  template <typename function_type, typename return_type, typename args_type, \
2233  GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2234  return_type \
2235  full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2236  GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2237 
2238 } // namespace internal
2239 
2240 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2241 #define ACTION(name) \
2242  class name##Action { \
2243  public: \
2244  explicit name##Action() noexcept {} \
2245  name##Action(const name##Action&) noexcept {} \
2246  template <typename F> \
2247  operator ::testing::Action<F>() const { \
2248  return ::testing::internal::MakeAction<F, gmock_Impl>(); \
2249  } \
2250  \
2251  private: \
2252  class gmock_Impl { \
2253  public: \
2254  template <typename function_type, typename return_type, \
2255  typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2256  return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2257  }; \
2258  }; \
2259  inline name##Action name() GTEST_MUST_USE_RESULT_; \
2260  inline name##Action name() { return name##Action(); } \
2261  template <typename function_type, typename return_type, typename args_type, \
2262  GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2263  return_type name##Action::gmock_Impl::gmock_PerformImpl( \
2264  GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2265 
2266 #define ACTION_P(name, ...) \
2267  GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2268 
2269 #define ACTION_P2(name, ...) \
2270  GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2271 
2272 #define ACTION_P3(name, ...) \
2273  GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2274 
2275 #define ACTION_P4(name, ...) \
2276  GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2277 
2278 #define ACTION_P5(name, ...) \
2279  GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2280 
2281 #define ACTION_P6(name, ...) \
2282  GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2283 
2284 #define ACTION_P7(name, ...) \
2285  GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2286 
2287 #define ACTION_P8(name, ...) \
2288  GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2289 
2290 #define ACTION_P9(name, ...) \
2291  GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2292 
2293 #define ACTION_P10(name, ...) \
2294  GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2295 
2296 } // namespace testing
2297 
2298 #ifdef _MSC_VER
2299 #pragma warning(pop)
2300 #endif
2301 
2302 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
internal::SetArgRefereeAction< k, typename std::decay< T >::type > SetArgReferee(T &&value)
R Apply(IndexSequence< arg_id... >, IndexSequence< excess_id... >, const args_type &args) const
auto operator()(const Args &...) const -> decltype(*pointer)
static Result Perform(const ArgumentTuple &)
PolymorphicAction< internal::ReturnNullAction > ReturnNull()
internal::IgnoredValue Unused
internal::ReturnRoundRobinAction< T > ReturnRoundRobin(std::vector< T > vals)
GTEST_API_ void IllegalDoDefault(const char *file, int line)
doublereal * g
static void SetFactory(FactoryFunction factory)
PolymorphicAction< internal::AssignAction< T1, T2 > > Assign(T1 *ptr, T2 val)
DoAllAction(UserConstructorTag, T &&initial_action, U &&... other_actions)
auto Apply(F &&f, Tuple &&args) -> decltype(ApplyImpl(std::forward< F >(f), std::forward< Tuple >(args), MakeIndexSequence< std::tuple_size< typename std::remove_reference< Tuple >::type >::value >()))
static void Set(T x)
internal::DoAllAction< typename std::decay< Action >::type... > DoAll(Action &&... action)
internal::Function< F >::Result Result
PolymorphicAction(const Impl &impl)
auto operator()(Args &&... args) const -> decltype((obj_ptr-> *method_ptr)(std::forward< Args >(args)...))
DoAllAction(UserConstructorTag, T &&action)
internal::SaveArgPointeeAction< k, Ptr > SaveArgPointee(Ptr pointer)
Result Perform(const ArgumentTuple &) const
ReturnType operator()(const Args &...) const
internal::InvokeWithoutArgsAction< typename std::decay< FunctionImpl >::type > InvokeWithoutArgs(FunctionImpl function_impl)
doublereal * x
#define i
internal::WithArgsAction< typename std::decay< InnerAction >::type, k, ks... > WithArgs(InnerAction &&action)
ql0001_ & k(htemp+1),(cvec+1),(atemp+1),(bj+1),(bl+1),(bu+1),(x+1),(clamda+1), &iout, infoqp, &zero,(w+1), &lenw,(iw+1), &leniw, &glob_grd.epsmac
static void Perform(const ArgumentTuple &)
PolymorphicAction< Impl > MakePolymorphicAction(const Impl &impl)
inline ::std::reference_wrapper< T > ByRef(T &l_value)
PolymorphicAction< internal::SetErrnoAndReturnAction< T > > SetErrnoAndReturn(int errval, T result)
internal::SaveArgAction< k, Ptr > SaveArg(Ptr pointer)
internal::ReturnNewAction< T, typename std::decay< Params >::type... > ReturnNew(Params &&... params)
typename MakeIndexSequenceImpl< N >::type MakeIndexSequence
internal::ReturnRefAction< R > ReturnRef(R &x)
std::decay< FunctionImpl >::type Invoke(FunctionImpl &&function_impl)
glob_log first
void operator()(const Args &... args) const
viol type
static bool Exists()
std::tuple< Params... > params
Action(const Action< Func > &action)
#define GTEST_CHECK_(condition)
Definition: gtest-port.h:1025
Action(ActionInterface< F > *impl)
internal::WithArgsAction< typename std::decay< InnerAction >::type > WithoutArgs(InnerAction &&action)
internal::ReturnRefOfCopyAction< R > ReturnRefOfCopy(const R &x)
SetErrnoAndReturnAction(int errno_value, T result)
internal::DeleteArgAction< k > DeleteArg()
void operator()(const Args &... args) const
auto operator()(Args &&... args) const -> decltype(std::get< k >(std::forward_as_tuple(std::forward< Args >(args)...)))
internal::Function< F >::ArgumentTuple ArgumentTuple
void operator()(const Args &... args) const
typename std::conditional< std::is_constructible< Impl >::value, Impl, Holder >::type type
R(typename std::tuple_element< I, std::tuple< Args... > >::type...) InnerSignature
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void,)
internal::SetArgumentPointeeAction< N, T > SetArgPointee(T value)
internal::Function< F >::Result Result
decltype(std::declval< F >()(std::declval< Args >()...)) call_result_t
ReturnRoundRobinAction(std::vector< T > values)
void operator()(const Args &... args) const
internal::Function< F >::ArgumentTuple ArgumentTuple
std::add_const< T >::type & as_const(T &t)
auto operator()(const Args &...) -> decltype(function_impl())
internal::ReturnArgAction< k > ReturnArg()
internal::DoDefaultAction DoDefault()
internal::ReturnAction< R > Return(R value)
decltype(TestImplicitConversion< From >(0)) type
void Assert(bool condition, const char *file, int line, const std::string &msg)
internal::SetArgumentPointeeAction< N, T > SetArgumentPointee(T value)
internal::ByMoveWrapper< R > ByMove(R x)
internal::SetArrayArgumentAction< k, I1, I2 > SetArrayArgument(I1 first, I2 last)
void operator()(const Args &... args) const
internal::WithArgsAction< typename std::decay< InnerAction >::type, k > WithArg(InnerAction &&action)
void operator()(Args &&... args) const
Result Perform(ArgumentTuple args) const
internal::ReturnPointeeAction< Ptr > ReturnPointee(Ptr pointer)
internal::IgnoreResultAction< A > IgnoreResult(const A &an_action)
::testing::Action< F > MakeAction()
typename std::tuple_element< I, T >::type TupleElement
void Perform(const ArgumentTuple &) const
decltype((std::declval< Class * >() -> *std::declval< MethodPtr >())()) ReturnType